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Viscoelastic polymeric materials provide good support elements to rotor shaft
systems by virtue of their e�ciency in dissipating vibratory energy. The in-
phase sti�ness and loss factor for such materials also change with the frequency
of excitation they are subjected to. In this paper frequency dependent
characteristics of the polymeric supports have been found by simultaneously
minimizing the unbalanced response and maximizing the stability limit speed.
This process yields better support characteristics than those obtained by
minimizing unbalance response alone. Optimum characteristics have been
found for the rotor shaft system mounted on (a) rolling element bearings and
(b) plain cylindrical journal bearings at the ends having polymeric supports.
The e�ects of viscous internal damping in the shaft, support mass and
gyroscopic e�ect due to non-symmetrical location of the disc have been
considered in the analysis. A procedure of controlling the slope of the support
characteristics versus frequency of excitation has been used and found to be
very suitable for obtaining feasible support characteristics. Examples have been
presented to justify the above conclusions.

# 1999 Academic Press

1. INTRODUCTION

Two major causes for excessive transverse vibration of a rotor±shaft system are
(i) the unbalance in the rotor and (ii) the loss of stability of the rotor±shaft
system. The former generates sinusoidal forces of excitation which are
responsible for excessive vibration at resonance, while the latter occurs above a
certain speed called the ``Stability Limit Speed'' when a slight perturbation
grows with time, aided by the energy of rotation of the rotor. Hence, smooth
operation of the rotor±shaft system demands minimum Unbalance Response
(UBR) and a Stability Limit Speed (SLS) much higher than the operating speed
of the rotor. Flexible damped supports discussed in references [1±4] were
observed to reduce the UBR and increase the SLS. Researchers also reported
suitable values of the support parameters that offer low UBR and high SLS. A
notable work by Pilkey et al. [5] applied the Linear Programming Technique to
minimize the UBR. No attention was, however, paid to ®nding the SLS. A
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noteworthy work reported by Bhat et al. [6] used an optimization technique to
®nd the optimum dimensions of a plain cylindrical journal bearing and the
viscosity of the oil to achieve minimum UBR. Barret et al. [7] reported optimum
support damping to minimize the UBR and maximize the SLS in the vicinity of
the ®rst critical speed of a rotor±shaft system. The effects of support mass and
polymeric support materials were, however, not considered. By virtue of the
ability of dissipating vibratory energy ef®ciently, polymeric materials [8] have
been used in many mechanical systems as vibration absorbers having many
operational advantages. Dutt and Nakra [9] reported improvements in SLS of
rotor±shaft systems having polymeric supports in comparison with conventional
¯exible damped supports and observed the existence of optimum values of
polymeric support parameters to achieve maximum SLS. When subjected to
sinusoidal excitations, polymeric materials exhibit in-phase stiffness and loss
factor both of which vary with the frequency of excitation. Dutt and Nakra [10]
utilized this property of the polymeric materials and predicted suitable frequency
dependent support characteristics (in terms of in-phase stiffness and loss factor)
to avoid resonance due to unbalance excitation for a rotor±shaft system with
single symmetrically placed rotor disc. The procedure followed in reference [10]
is dif®cult to apply to continuous multi-rotor multi support systems.
References discussed so far, did not assess the SLS, a very important index

of rotor operation, while minimizing the UBR. The idea of Barret et al. [7]
has been furthered here to predict suitable frequency dependent support
characteristics which keep the SLS of the system well above the operating speed
of the rotor while minimizing the UBR. The system considered in this work
comprises a single unbalanced rotor disc placed on a mass-less elastic rotor±
shaft mounted on bearings at the ends supported on polymeric supports. Effects
of support mass, frequency dependent properties of the supports, viscous
internal damping in the shaft and the gyroscopic effect have been considered in
the analysis. Effects of rolling element and plain cylindrical journal bearings
have been studied separately in Cases I and II. Case II differs from Case I in the
sense that in Case II, the destabilizing forces arise due to the oil ®lm in addition
to the rotary internal damping force, the only source of destabilizing force in
Case I. A detailed parametric study to show the effects of varying system
parameters on the SLS, and the optimum support characteristics have been
presented.

2. EQUATIONS OF MOTION

The system is schematically shown in Figure 1(a). The rotor disc of mass M2 is
placed assymetrically along the shaft. Ip and It denote respectively the polar and
transverse mass moments of inertia of the rotor disc. The bearings are modelled
to have, in general, eight stiffness and damping coef®cients. (Kxx , Cxx) and
(Kyy , Cyy) denote the direct stiffness and damping coef®cients in the X and Y
directions respectively. (Kyx , Cyx) and (Kxy , Cxy) denote the cross coupled
stiffness and damping coef®cients along the X and Y directions. The four-
element model [9] shown in Figure 1(b) represents the polymeric support. K1 and
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C1 denote primary support stiffness and damping coef®cients while K2 and C2

denote respectively the secondary support stiffness and damping coef®cients.
The expression given below for kinetic energy T has been obtained from the

respective expression in reference [11] after adding the underlined terms due to
each support mass.

T � 1=2�M2
_X2
2 �M2

_Y2
2 � Ipo2 � It _y

2 � It _f2 � 2Ipo _fy

�M1
_X2
1L �M1

_Y2
1L �M1

_X2
1R �M1

_Y2
1R�: �1�

The expression given below for Strain energy V has been obtained from the
respective expression in reference [11] after adding the underlined terms due to
the stiffnesses of bearings and supports.

V � 1=2�KsX
2
s � KsY

2
s � C22�yÿ a�2 � C22�fÿ b�2 ÿ C12�yÿ a�Ys ÿ C�fÿ b�Xs

��Kxx�LX2
JL � �Kyy�LY2

JL � �Kxx�RX2
JR � �Kyy�RY2

JR � 2f��Kxy�LYJL�XJL

���Kyx�LXJL�YJL � ��Kxy�RYJR�XJR � ��Kyx�RXJR�YJRg � K1�X2
1L
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Y1L
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Figure 1. System diagram.
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�Y2
1L � X2

1R � Y2
1R� � K2f�X1L ÿ X3L�2 � �Y1L ÿ Y3L�2

��X1R ÿ X3R�2 � �Y1R ÿ Y3R�2g�,
�2�

where the subscripts L and R denote the left and right sides, respectively. The
stiffnesses of the shaft at the location of the disc are denoted by Ks , C12 and C22

the expressions of which are given below.
Ks (force/de¯ection)�K*(e21� e22ÿ e1e2)/e1e2 , C12 (force/angular de¯ection or

moment/de¯ection)�K*l(e2ÿ e2) and C22 (moment/angular de¯ection)�
K*l 2e1e2 , where e1� l1/l, e2� l2/l and K*� 3EIl/l21l

2
2 , E and I being the Young's

modulus of the material of the shaft and area moment of inertia of the cross
section of the shaft, respectively. Simply supported end conditions were
considered for the calculations of the stiffnesses.
The expressions of a, b, Xs , Ys are given below

a � �YJR � Y1R ÿ YJL ÿ Y1L�=l, �3a�

b � �XJR � X1R ÿ XJL ÿ X1L�=l, �3b�

Xs � X2 ÿ �XJL � X1L�e2 ÿ �XJR � X1R�e1, �3c�

Ys � Y2 ÿ �YJL � Y1L�e2 ÿ �YJR � Y1R�e1: �3d�
The expression given below for dissipated energy D has been obtained from the
respective expression in reference [2] after adding the underlined terms due to the
damping in bearings and supports.

D � Ci�� _X2
s � _Y2

s �=2� o�Ys
_Xs ÿ Xs

_Ys�� � 1
2C1� _X2

1L � _Y2
1L � _X2

1R � _Y2
1R�

�1
2C2� _X2

3L � _Y2
3L � _X2

3R � _Y2
3R� � 1

2�2f�Cxy�L _YJL
_XJL � �Cyx�L _XJL

_YJL

��Cxy�R _YJR
_XJR � �Cyx�R _XJR

_YJRg � �Cxx�L _X2
JL � �Cyy�L _Y2

JL

��Cxx�R _X2
JR � �Cyy�R _Y2

JR�: �4�

Substituting equations (3) into equations (1), (2) and (4) and using Lagrange's
equations in generalized co-ordinates, 16 unforced equations of motion are
obtained and given in Appendix A.

3. UNBALANCE RESPONSE AND STABILITY LIMIT SPEED

3.1. CASE IÐSYSTEM WITH ROLLING ELEMENT BEARINGS

The rolling element bearings are modelled to have only direct stiffness
coef®cients equal in magnitude in both x and y directions. Hence, the equations
of motion for this system can be obtained from those given in Appendix A, by
making the following substitutions:
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�Kxx�L � �Kyy�L � �Kb�, �Kxy�L � �Kyx�L � �Cxx�L
� �Cxy�L � �Cyx�L � �Cyy�L � 0,

�Kxx�R � �Kyy�R � �Kb�, �Kxy�R � �Kyx�R � �Cxx�R
� �Cxy�R � �Cyx�R � �Cyy�R � 0:

For checking the correctness, we put Ci� 0 and ignoring the support mass, the
equations are seen to be identical to those in reference [11]. Again, the equations
can be reduced to those in reference [3] if the gyroscopic effect is ignored and the
rotor is assumed to be in the middle of the shaft.

3.1.1. Unbalance response

Unbalance response of the rotor has been determined by solving the forced
equations of motion. The components of the unbalance force along X and Y are
M2euo2 cos(ot) and M2euo2 sin(ot) where eu is the eccentricity at rotor disc and
``t'' is the time in seconds. Considering the forces due to unbalance the equations
of motion obtained from Appendix A can be written in the form:

�Mf�Qg � �C�f _Qg � �K �fQg � fFg, �5�
where [M ], [C ] and [K ] are the mass, damping and stiffness matrices,
respectively. The force and displacement vectors {F}, {Q} are

fFg � �M2euo2 cos�ot�, M2euw
2 sin�ot�, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0�T

fQg � �X2, Y2, XJL, YJL, XJR, YJR, X1L, Y1L, X1R, Y1R, X3L, Y3L, X3R, Y3R, f, y�T:
The force vector can also be written as {F}� {f}eiot. Assuming harmonic
solutions of the form Qi� qie

iot, where Qi is the ith element of {Q}, the
equations of motion can be represented as

�ÿo2�M� � io�C� � �K��fqg � ffg: �6�
Using the non-dimensional parameters: d�o/on , on�

���������������
K�=M2

p
, R� Ip/It , Z,

a1�M1/M2 , bb�Kb/K*, zi�Ci/Cc , where Cc� 2M2on , b1�K1/K*, b2�K2/K*,
z1�C1/Cc , z2�C2/Cc , bxx=Kxx/K*, bxy�Kxy/K*, byx�Kyx/K*, byy�Kyy/K*,
zxx�Cxx/Cc , zxy�Cxy/Cc , zyx�Cyx/Cc , zyy�Cyy/Cc , the forced non-dimensional
equations of motion of the rotor±shaft system can be written, as given in
Appendix B, and can be expressed in the form:

�A��fqg � ffg �7�
Now the unbalance response can be calculated as

z2 � �Real�x2eiot� � iReal�y2eiot��, �8�
where z2 is a complex quantity. The non-dimensional unbalance response
amplitude is expressed as

RD � jz2j=eu: �9�
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Solving equation (7) for x2 and y2 and using equations (8) and (9) the unbalance
response amplitude RD can be found out.

3.1.2. Stability Limit

To ®nd the stability limit speed of the system, equation (5) is written with
right side forces equated to zero and can be expressed in the form:

0 M
M 0

� �
�q
_q

� �
� ÿM 0

C K

� �
_q
q

� �
� f0g

or

�A1�f _ug � �A2�fug � f0g, �10�
where

_q

q

� �
� fug and

�q

_q

� �
� f _ug:

After converting the equations into the form as in equation (10) the stability
limit speed was found by examining the sign of the real part of the eigenvalues,
which are complex in general, for each step of increment of speed, using the
EISPACK subroutine [7]. The non-dimensional stability limit speed is
represented by DLIMIT.

DLIMIT=stability limit speed/speed of the rotor.

3.2. CASE IIÐSYSTEM WITH PLAIN CYLINDRICAL JOURNAL BEARINGS

For this case the rotor disc is considered to be in the middle of the shaft. The
equations of motion have been found by substituting the following into the
equations of motion given in Appendix A:

�Kxx�L � �Kxx�R � Kxx, �Cxx�L � �Cxx�R � Cxx, X1L � X1R � X1,

Y1L � Y1R � Y1, XjL � XjR � Xj, YjL � YjR � Yj, X3L � X3R � X3,

Y3L � Y3R � Y3, C12 � C22 � a � b � 0 and e1 � e2 � 0�5:
After the above substitutions the total number of equations will reduce to eight.
The expressions for Kxx , Kxy , Kyy , Kyx and Cxx , Cxy , Cyy , Cyx in terms of
Sommerfeld number were taken from reference [13]. The unbalance response and
stability limit speed of the system can be found in the fashion followed in Case I.

4. OPTIMIZATION

After determining the unbalance response and stability limit speed as functions
of non-dimensional support parameters b1, b2 , z1, z2 , optimization has been
carried out in order to predict the optimum support characteristics i.e., Ksn and
Z, which are given below
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Ksn � b1b2 � 4d2z22�b1 � b2�
b22 � 4d2z22�

" #
, �11�

Z � 2d�b22z1 � b22z2 � 4z1z2d
2�

�b1b22 � 4z22d
2�b1 � b2��

: �12�

Two schemes of optimization have been used.

Scheme I
Objective�minimize (RD)
Constraints: (a) constraints for support parameters; (b) constraints for space

restrictions and other system constraints.

Scheme II
Objective�minimize (RD-DLIMIT)
Constraints: (a) constraints for support parameters; (b) constraints for space

restrictions and other system constraints.

Z is the loss factor of the viscoelastic support. The characteristics of viscoelastic
materials are given in reference [14]. It is found that the inphase stiffness
increases uniformly and monotonically with frequency of excitation while the
variation of loss factor with excitation frequency is uniform. Again it is observed
that generally the maximum value of the loss factor is E1. Hence, the support
constraint used in this work is ZE 1. However, no constraints on space
restrictions or other system constraints have been considered in this work. They
can de®nitely be taken care of under the schemes proposed. The objective
function has been optimised by an optimization subroutine which optimizes the
function by the gradient method [15]. The objective function is optimized for
each step wise increment of the speed of rotation, to predict values for support
parameters for that speed.

5. IMPORTANCE OF SLOPE CONTROL

5.1. EXAMPLE

Figures 2(a±d) show respectively the plots of (RD and DLIMIT), (b1 and b2),
(z1 and z2) and (Ksn and Z) drawn against d obtained after carrying out the
optimization process described under Scheme II, for a rotor±shaft system
mounted on rolling element bearings at the ends supported on polymeric
supports. Figures 3(a±d) show similar plots for the system with plain cylindrical
journal bearings. It is noticed that the plots of (Ksn and Z) include sudden
changes in slopes. It is obvious that the support characteristics are dif®cult, if
not impossible, to generate by using any polymeric material for which the
characteristics are smooth. Therefore, a slope control technique, as described
below, has been used to restrain the slope of the support parameters within
speci®ed bounds to obtain smooth support characteristics.
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5.2. SLOPE CONTROL

Restriction on the change of slope was imposed on the variations of the
support parameters b1, b2 , z1, z2 , against d such that the slope of each at any
value of d remains within 0� to 20�, a value chosen tacitly as the upper bound.
To start with, the values of support parameters have been taken to be at the
respective lower limits. An optimization process has been carried out to ®nd the
support parameters abiding by the slope restrictions for subsequent increment of
speeds.

6. RESULTS AND DISCUSSION

6.1. SYSTEMS WITH ROLLING ELEMENT BEARINGS

6.1.1. Parametric study of stability limit speed

To start with, a parametric analysis for the stability limit speed has been
presented to show the effect of different non-dimensional system parameters on
the stability limit speed. A set of values for the parameters has been chosen. One
parameter has been selected at a time and its value has been varied keeping the
value of the others ®xed.
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Figure 2. (a) Minimization of RD and maximization of DLIMIT, with out slope control, for
system with rolling element bearings; a1� 0�4, bb� 8, zi� 0�05, e1� 0�1. (b) Variation of b1 and b2
w.r.t d. (c) Variation of z1 and z2 w.r.t. d. (d) Variation of Ksn and Z w.r.t d.
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Figure 4 shows the variation of non-dimensional stability limit speed

(DLIMIT) of the system with rolling element bearings at the ends with respect to

the non-dimensional location of the rotor disc on the shaft (e1). A non-central

location of the disc gives rise to the gyroscopic couple as the slope of the rotor

shaft at the location of the rotor disc changes. The gyroscopic couple results in

stiffening of the shaft. Hence it becomes dif®cult to change the slope of the shaft

at the location of the disc and the stability limit speed increases. It is observed
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Figure 4 Variation of stability limit w.r.t. e1; a1� 0�4, bb� 4, b1� 0�4, b2� 0�1, zi� 0�005,
z1� 0�015, z2� 0�02.
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10 K. C. PANDA AND J. K. DUTT

from the ®gure that the stability limit speed diminishes progressively as the disc

is moved towards the center and the gyroscopic couple is reduced.

Two curves have been drawn in each ®gure from Figure 5 to Figure 11. The

curve in the solid line (Ð) has been drawn taking into account the gyroscopic

couple, while the other in dotted lines (. . .) has been drawn after ignoring the

gyroscopic couple introduced by the disc which is still placed non-centrally.

Figure 5 shows the variation of DLIMIT of the rotor±shaft system with

respect to different values of zi of the shaft. It is well established [10, 11] that the

internal damping in the shaft reduces the stability limit speed. The same is true

in this case. Again it is observed that the gyroscopic couple helps in stabilizing

the system.

Figure 6, shows the variation of DLIMIT with respect to different values of

support mass ratio (a1). The heavier the support, the more the dynamic inertia

load on the system which is destabilized faster. Still the gyroscopic couple

provides a higher stability limit speed.

Figures 7 and 8 show the variation of DLIMIT with respect to different values

of non-dimensional primary support stiffness and damping b1 and z1. The

primary support stiffness and damping play important roles in deciding the
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Figure 5. Variation of stability limit w.r.t. zi; a1� 0�4, bb� 4, b1� 0�4, b2� 0�1, z1� 0�015,
z2� 0�02, e1� 0�1.
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Figure 6. Variation of stability limit w.r.t. a1; bb� 4, b1� 0�4, b2� 0�1, zi� 0�005, z1� 0�015,
z2� 0�02, e1� 0�1.
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stability limit speed. It is well known that support damping increases the stability

limit speed, but it happens only when the support gets de¯ected. If either the

primary support stiffness or the primary support damping assumes a very high

value, the support tends to be rigid and hence the stabilizing effects of the

support damping are not obtained. Therefore, it is observed from the ®gures, as

well as supported by references [10, 11], that very high values of b1 and z1 lowers
the stability limit speed. There remains optimum values for each of these

parameters corresponding to the maximum stability limit speed. It is also

observed that the gyroscopic couple postpones the destabilizing effects.

Figures 9 and 10 show the variation of DLIMIT with respect to different non-

dimensional values of secondary support stiffness and damping b2 and z2 . When

either secondary support stiffness or secondary support damping becomes very

high, the support can still be de¯ected. On the one hand when b2 becomes very

high the de¯ection of the support includes the effects of secondary support

damping, and on the other hand, when z2 is very high, the effects of secondary

support stiffness is included. Out of the two cases, when the stabilizing effect of

secondary support damping is included, the dissipation of energy becomes more

ef®cient and hence a higher stability limit speed is obtained in comparison to the

case when the effects of secondary support stiffness is included.
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Figure 11 shows the variation of DLIMIT with respect to non-dimensional
bearing stiffness bb . No clear physical justi®cation can be given for such
variation but (a) there exists an optimum value for each of these parameters for
maximum stability limit, and (b) gyroscopic effect helps to maintain the stability.
Hence, there is an optimum combination of support parameters for obtaining
the maximum stability limit speed.

6.1.2. Optimization results

In this section the optimum frequency dependent support characteristics and
the corresponding RD and DLIMIT obtained by using the optimization
procedures described under Schemes I and II are presented.
Figures 12 and 13 show the variations of RD and DLIMIT with respect to d

for Schemes I and II, respectively with the concept of slope control applied to
the variation of support characteristics. Figures 14 and 15 present the respective
support characteristics. Comparing Figures 12 and 13, it is observed that Scheme
II undoubtedly improves the stability limit speed in comparison to Scheme I but
the effect of Scheme II is marginal. It is also observed that the support
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characteristics are fairly smooth and do not involve any sudden change. This is
the advantage of using the slope control technique.

6.2. SYSTEM WITH PLAIN CYLINDRICAL JOURNAL BEARINGS

When the rotor±shaft system is mounted on plain cylindrical journal bearings
at the ends, destabilizing forces arise due to the ¯uid ®lm in the bearings, in
addition to the internal damping forces caused by the de¯ection and rotation of
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Figure 11. Variation of stability limit w.r.t. bb; a1� 0�4, b1� 0�4, b2� 0�1, zi� 0�005, z1� 0�015,
z2� 0�02, e1� 0�1.
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the shaft. Under this situation a study has been carried out with the rotor disc

kept at the center of the shaft.

Figure 16 shows the variation of DLIMIT with respect to the non-dimensional

coef®cient of internal damping. It is observed that an increase in internal

damping force in the shaft reduces the stability limit speed of the system

drastically.
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Figure 14. Variation of Ksn and Z w.r.t. d when RD is minimized.
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Figure 15. Variation of Ksn and Z w.r.t. d when RD is minimized and DLIMIT is maximized.
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Figure 16. Variation of DLIMIT w.r.t zi . z1� 0�1, z2� 0�2, a1� 0�1, b1� 0�2, b2� 0�1,
M� 220 kg, length of shaft� 0�1016 m, bearing length� 0�0508 m, bearing diameter� 0�1016 m,
clearance� 0�000106 M, viscosity of oil� 0�00568, Ns/m2.
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Figures 17 and 18 show the variation of RD and DLIMIT with respect to d
for Schemes I and II, respectively, with the concept of slope control imposed on

the variation of support parameters. Figures 14 and 15 present the respective

support characteristics. It is observed that Scheme II provides a higher stability

limit speed in comparison to Scheme I. This happens because the destabilizing

¯uid ®lm forces are not dependent on the amplitude of rotor response like the

internal damping forces in the shaft. Hence, Scheme I works well as long as the
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Figure 17. Variation of RD and DLIMIT w.r.t. d when RD is minimized, with slope control.
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Figure 18. Variation of RD and DLIMIT w.r.t. d when RD is minimized and DLIMIT is
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destabilizing force depends on a rotor response, as in the case of a rotor±shaft
system having rolling element bearings, but Scheme II proves more ef®cient
otherwise. It is noted from Figures 19 and 20 that the support characteristics are
smooth enough and do not involve any sudden changes.
A comparison of Figures 12, 13, 17 and 18 shows that Scheme II is certainly

more useful in the case of a rotor±shaft system supported on journal bearings
where destabilizing forces are also offered by ¯uid ®lms in addition to the
internal damping present in the shaft. Hence, the optimization process as in
Scheme I may be followed for systems with rolling element bearings, whereas
Scheme II is a must for systems with ¯uid ®lm bearings.

7. CONCLUSIONS

From the work the following conclusions can be drawn.
Gyroscopic effect increases the stability limit speed of a system mounted on

rolling element bearings.
Simultaneous minimization of the unbalance response amplitude and

maximization of stability limit speed (Scheme II) proves more useful than only
minimizing the unbalance response (Scheme I) for obtaining suitable frequency
dependent support characteristics.
Optimization Scheme II is much more time consuming than Scheme I.
For getting a feasible support characteristic, slope control of support

parameters is essential for the rotor-shaft system with both rolling element and
hydrodynamic journal bearings.
As all the parameters have been non-dimensionalised, the results will be valid

for any parametric value of a rotor±shaft system.
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APPENDIX A

M2
�X2 � KsXs ÿ C12�fÿ b� � Ci

_Xs � CioYs � 0, �A1�

M2
�Y2 � KsYs ÿ C12�yÿ a� � Ci

_Ys ÿ CioXs � 0, �A2�

�Kxx�LXJL � �Kxy�LYJL ÿ KsXse2 ÿ Ci
_Xse2 ÿ CioYse2 � �Cxx�L _XJL

��Cxy�L _YJL � C22�fÿ b�=l� C12�fÿ b�e2 ÿ �C12Xs=l � � 0, �A3�

�Kyx�LXJL � �Kyy�LYJL ÿ KsYse2 ÿ Ci
_Yse2 � CioXse2 � �Cyx�L _XJL

��Cyy�L _YJL � C22�yÿ a�=l� C12�yÿ a�e2 ÿ C12Ys=l � 0, �A4�
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�Kxx�RXJR � �Kxy�RYJR ÿ KsXse1 ÿ Ci
_Xse1 ÿ CioYse1 � �Cxx�R _XJR

��Cxy�R _YJR ÿ C22�fÿ b�=l� C12�fÿ b�e1 � C12Xs=l � 0, �A5�

�Kyx�RXJR � �Kyy�RYJR ÿ KsYse1 ÿ Ci
_Yse1 � CioXse1 � �Cyx�R _XJR

��Cyy�R _YJR ÿ C22�yÿ a�=l� C12�yÿ a�e1 � C12Ys=l � 0, �A6�

M1
�X1L ÿ KsXse2 � C22�fÿ b�=l� K1X1L � C1

_X1L � K2�X1L ÿ X3L�

�C12�fÿ b�e2 ÿ C12Xs=lÿ Ci
_Xse2 ÿ CioYse2 � 0, �A7�

M1
�Y1L ÿ KsYse2 � C22�yÿ a�=l� K1Y1L � C1

_Y1L � K2�Y1L ÿ Y3L�

�C12�yÿ a�e2 ÿ C12Ys=lÿ Ci
_Yse2 � CioXse2 � 0, �A8�

M1
�X1R ÿ KsXse1 ÿ C22�fÿ b�=l� K1X1R � C1

_X1R � K2�X1R ÿ X3R�

�C12�fÿ b�e1 � C12Xs=lÿ Ci
_Xse1 ÿ CioYse1 � 0, �A9�

M1
�Y1R ÿ KsYse1 ÿ C22�yÿ a�=l� K1Y1R � C1

_Y1R � K2�Y1R ÿ Y3R�

�C12�yÿ a�e1 � C12Ys=lÿ Ci
_Yse1 � CioXse1 � 0, �A10�

K2�X3L ÿ X1L� � C2
_X3L � 0, �A11�

K2�Y3L ÿ Y1L� � C2
_Y3L � 0, �A12�

K2�X3R ÿ X1R� � C2
_X3R � 0, �A13�

K2�Y3R ÿ Y1R� � C2
_Y3R � 0, �A14�

It�f� C22�fÿ b� � Ipo _yÿ C12Xs � 0, �A15�

It�y� C22�yÿ b� ÿ Ipo _fÿ C12Ys � 0: �A16�

APPENDIX B

d2x2 � A1xs ÿ A2�f 0 ÿ xas� � 2zidxs � 2zidys � d2, �B1�
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d2y2 � A1ys ÿ A2�y 0 ÿ yas� � 2zidys ÿ 2zidxs � ÿid2, �B2�

�bxx�LxJL � �bxy�LyJL ÿ A1e2xs ÿ 2zide2xs ÿ 2zide2ys

�A3�f 0 ÿ xas� � 2�zxx�LdxJL � 2�zxy�LdyJL � A2�f 0 ÿ xas�e2 ÿ A2xs � 0, �B3�

�byx�LxJL � �byy�LyJL ÿ A1e2ys ÿ 2zide2ys � 2zide2xs

�A3�y 0 ÿ yas� � 2�zyx�LdxJL � �2zyy�LdyJL � A2�y 0 ÿ yas�e2 ÿ A2ys � 0, �B4�

�bxx�RxJR � �bxy�RyJR ÿ A1e1xs ÿ 2zide1xs ÿ 2zide1ys � A3�f 0 ÿ xas�

�2�zxx�RdxJR � 2�zxy�RdyJR � A2�f 0 ÿ xas�e1 � A2xs � 0, �B5�

�byx�RxJR � �byy�RyJR ÿ A1e1ys ÿ 2zide1ys � 2zide1xs

ÿA3�y 0 ÿ yas� � 2�zyx�RdxJR � �2zyy�RdyJR � A2�y 0 ÿ yas�e1 � A2ys � 0, �B6�

a1d
2x1L ÿ A1e2xs � A3�f 0 ÿ xas� � b1x1L � b2�x1L ÿ x3L�

�2z1dx1L � A2e2�f 0 ÿ xas� ÿ Asxs ÿ 2zide2xs ÿ 2zide2ys � 0, �B7�

a1d
2y1L ÿ A1e2ys � A3�y 0 ÿ yas� � b1y1L � b2�y1L ÿ y3L�

�2z1dy1L � A2e2�y 0 ÿ yas� ÿ A2ys ÿ 2zide2ys � 2zide2xs � 0, �B8�

a1d
2x1R ÿ A1e1xs ÿ A3�f 0 ÿ xas� � b1x1R � b2�x1R ÿ x3R�

�2z1dx1R � A2e1�f 0 ÿ xas� � A2xs ÿ 2zide1xs ÿ 2zide1ys � 0, �B9�

a1d
2y1R ÿ A1e1ys ÿ A3�y 0 ÿ yas� � b1y1R � b2�y1R ÿ y3R�

�2z1dy1R � A2e1�y 0 ÿ yas� � A2ys ÿ 2zide1ys � 2zide1xs � 0, �B10�

b2�x3L ÿ x1L� � 2z2dx3L � 0, �B11�

b2�y3L ÿ y1L� � 2z2dy3L � 0, �B12�

b2�x3R ÿ x1R� � 2z2dx3R � 0, �B13�

b2�y3R ÿ y1R� � 2z2dy3R � 0, �B14�
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A3d
2c2f 0 � A3�f 0 ÿ xas� � RA3d

2c2y 0 ÿ A2xs � 0, �B15�

A3d
2c2y 0 � A3�y 0 ÿ yas� ÿ RA3d

2c2f 0 ÿ A2ys � 0, �B16�

where xas� (xJR�x1RÿxJLÿ x1L), yas� (yJR� y1Rÿ yJLÿ y1L) � 0 ��l,
� 0 � �l, A1� (e2

1� e2
2ÿ e1e2)/e1e2 , A2� (e1ÿ e2) and A3� e1e2 .

APPENDIX C: NOMENCLATURE

a angular orientations of rotor axis about X-axis
b angular orientations of rotor axis about Y-axis
C1 primary support damping
C2 secondary support damping
Cmn ¯uid ®lm damping coef®cients for journal bearings [m� x, y;

n� x, y]
Ci internal damping coef®cient
Cc critical damping coef®cient (2M2on)
C12 force/angular de¯ection or moment/de¯ection of the shaft at rotor

disc location i.e., K*l(e1ÿ e2)
C22 moment/angular de¯ection or angular stiffness of the shaft at rotor

disc location i.e., K*l2(e1e2)
� d/dt
D dissipation energy
eu eccentricity at rotor disc
e1 and e2 l1/l and l2/l
E Young's modulus of elasticity for shaft material
F force vector
Q displacement vector
f amplitude of force
Ip and It polar and transverse mass moments of inertia of the disc
i

�������ÿ1p
K* 3EIl/(l21l

2
2)

Ksupport (K1K2� io(K1C2�K2C1�K2C2)ÿC1C2o2)/(K2� ioC2) is the
complex support stiffness can also be written as Ksn(1� iZ) where
Ksn is in-phase support stiffness and Z is the loss factor

Kb stiffness of the rolling element bearing
K1 and K2 primary and secondary support stiffness
Ki,j ¯uid ®lm stiffness coef®cients for journal bearing [i� x, y; j� x, y]
l1 and l2 distance of rotor disc from left and right bearing
l length of the shaft
M1 and M2 mass of the support and mass of the rotor
t time in seconds
T and V kinetic and potential energy
y absolute angular de¯ections of rotor axis about X-axis
c absolute angular de¯ections of rotor axis about Y-axis
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o angular velocity of the rotor
on fundamental undamped natural frequency of the system

���������������
K�=M2

p
Non-dimensional terms
a1 mass ratio (M1/M2)
bb non-dimensional bearing stiffness (Kb/K*)
(bij)k (Kij)k/K* for [i� x, y; j� x, y; k�L, R]
(zij)k (Cij)k/Cc for [i� x, y; j� x, y; k�L, R]
DLIMIT non-dimensional stability limit (stability limit speed o)
d o/on i.e., the non-dimensional speed of rotation of the rotor disc
R Ip/It
RD non-dimensional response (i.e., |z2|/eu)
z2 [Real(x2e

iot)� iReal(y2e
iot)]

zi Ci/Cc

Support parameters
b1 and b2 K1/K* and K2/K*
z1 and z2 C1/C2 and Cc/Cc

Support characteristics
Ksn non-dimensional in-phase support stiffness (i.e., Real(Ksupport)/K*)
Z loss factor of support and is given as Imag(Ksupport)/Real(Ksupport)
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